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A B S T R A C T   

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific 
surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of 
abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these 
information gaps by boosting media-based remote monitoring efforts with machine learning and automation. 

We created a database of 53,345 shark images covering 219 species of sharks, and packaged object-detection 
and image classification models into a Shark Detector bundle. The Shark Detector recognizes and classifies sharks 
from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these 
models to common data-generation approaches of sharks: collecting occurrence records from photographs taken 
by the public or citizen scientists, processing baited remote camera footage and online videos, and data-mining 
Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a 
result of training data quantity. 

The Shark Detector can classify 47 species pertaining to 26 genera. It sorted heterogeneous datasets of images 
sourced from Instagram with 91% accuracy and classified species with 70% accuracy. It located sharks in baited 
remote footage and YouTube videos with 89% accuracy, and classified located subjects to the species level with 
69% accuracy. All data-generation methods were processed without manual interaction. 

As media-based remote monitoring appears to dominate methods for observing sharks in nature, we developed 
an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the 
software pipeline increases as more images are added to the training dataset. We provide public access to the 
software on our GitHub page.   

1. Introduction 

Sharks are excellent indicators of ocean environmental health how
ever they are constantly challenged by growing fishing pressures as well 
as poor management and conservation as a result of data paucity, 
insufficient taxonomic knowledge, and underdeveloped monitoring 
methods (Jorgensen et al., 2022). Observation data of sharks via 
surveying and fisheries monitoring is often extremely costly or difficult 
to collect and is exacerbated when species with larger home ranges are 
considered (Baum and Blanchard, 2010). Furthermore, classification of 
sharks is still debated for many species (Serena et al., 2020). The com
bination of observed global declines and increasing data resolution has 
resulted in the amount of IUCN-listed threatened species doubling since 
2014 (Dulvy et al., 2021). Sharks remain an extremely data deficient 

group of marine animals and these information gaps contribute to the 
lack of abundance and distribution indices as well as taxonomic preci
sion needed to properly assess population statistics (Ferretti et al., Un
published data; Jorgensen et al., 2022). 

Image-based biomonitoring is a transformative alternative to 
expensive and invasive direct observation methods in ecological surveys 
of marine and terrestrial environments (Siddiqui et al., 2018; Weinstein, 
2018; Whytock et al., 2021). With significant advancements in baited 
underwater remote videos (BRUVs), motion-activated camera traps, and 
crowdsourced citizen science media, ecological information is being 
produced at a rate never seen before (Goetze et al., 2019; Weinstein, 
2018; Whytock et al., 2021). Importantly, remote monitoring methods 
generate visual media that can help fill the shark information gaps. 
These methods are non-invasive and useful for minimizing sampling 
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effort. However they produce large quantities of media to post-process 
for species identification and analyses, including removing irrelevant 
images (Swanson et al., 2015). Studies like Tabak et al. (2019) and 
Malde et al. (2019) stress the importance of using deep learning pro
grams to filter out unrelated content and facilitate rapid sampling. 

Deep learning algorithms are highly flexible and well suited for 
approaching many of these tasks (LeCun et al., 2015; Malde et al., 2019; 
Siddiqui et al., 2018). They have been used to estimate fish sizes from 
images (Alvarez Ellacur'ıa et al., 2019; Garcia et al., 2019), identify 
discarded and processed fish (French et al., 2019), and classify acoustic 
and movement data (Brautaset et al., 2020; Fallon et al., 2016; Kadar 
et al., 2020). However, machine-learned detection and image classifi
cation of shark species is seldom studied due to a lack of a sufficient 
amount of training data (Ferretti et al., Unpublished data). Video and 
photographic documentation of sharks are rarely obtained from com
mercial fisheries. Such images are more reliably sourced from tourists, 
social networks, and underwater photographers (Taklis et al., 2020). 
Consequently, there are few studies that have curated a training dataset 
of shark images. iSharkFin is a recognition system which can identify 39 
species of sharks from pictures of associated dorsal fins (Barone et al., 
2022). However this system does not classify whole-body images 
because it is primarily focused on the tracing of illegal fin trading, and 
requires users to manually select features and input points that describe 
fin shape. As a step forward, Seek is a generalist image classifier which 
sources the iNat2017 archive of 859,000 images to detect and classify 
over 5000 organisms, including shark species (Horn et al., 2017). This 
app advances animal classification, but because of its large scope, it 
remains inaccurate for classifying the 509 species of living sharks. 

Because there are many morphologically diverse and data-poor shark 
species, classifying them is not a straightforward process for machine 
learning. Here, we approach this challenge by first constructing the 
largest training dataset of shark images. Second, we combine object- 
detection and hierarchical classification methods for images and 
videos to facilitate the creation of biologically relevant data on sharks. 
Assembling and annotating large amounts of data-mined and user- 
uploaded media, for the use of conservation, is an emerging approach 
(Di Minin et al., 2015; Sullivan et al., 2014). Fish species classification 
with machine learning algorithms has only begun developing within the 
last two decades (Siddiqui et al., 2018). As a result of interacting with 
big data and citizen scientists, we have created the largest and most 
diverse archive of shark images. Few studies have combined object- 
detection with classification for the purpose of increasing shark taxo
nomic accuracy (Barone et al., 2022; Horn et al., 2017). Our objective 
was automatically detecting and classifying, to the species level, any 

image with perceptible shark features. Because our methods build upon 
standard recognition and data-mining approaches, we can generate, 
detect, and classify shark-sourced visual media. We can efficiently post- 
process BRUVs, camera trap images, remotely operated underwater 
vehicle (ROV) footage, and shared social media by automatically 
removing irrelevant content and classifying shark species. 

2. Methods 

Our shark detection and classification pipeline is composed of 
several steps and three main components (Fig. 1): 1 - an object-detection 
model called the Shark Locator (SL), which locates one or several shark 
subjects in images and draws bounding boxes around them; 2 - a binary 
sorting model called Shark Identifier (SI) which sorts images of sharks 
from a pool of heterogeneous images; and 3 - multiclass models called 
Shark Classifiers (SCs) which classify shark images to the genus and 
species levels. Combining these three modeling components, we devel
oped a shark identification and classification pipeline called Shark De
tector (SD) which can ingest any media containing shark subjects, locate 
and sort subjects according to relevance, and classify the sharks to the 
species level. Shark training images for developing these models were 
mainly sourced from sharkPulse – a crowd-sourcing platform which 
mines and aggregates shark media from social networks, citizen science 
projects, user submissions, and other electronic archives (Ferretti et al., 
Unpublished data). 

2.1. Shark locator: object-detection 

The identification pipeline starts with the SL. This model is primarily 
used to inflate an initial training dataset. It crops one or multiple shark 
subjects from images thereby creating new images. It locates shark 
subjects in videos (e.g., BRUV footage) and extracts frames with shark 
subjects. This process had the dual objective of removing any irrelevant 
subject or noisy background from shark images which challenged the 
training process, and boosting the training dataset by splitting images 
with multiple shark subjects into multiple distinct shark training images. 
Cropping shark features from images and video frames provided better 
training quality (see Fig. 2). 

To build the SL, we sourced Tensorflow's Model Garden (Yu et al., 
2020) and used a Faster Region-based Convolutional Neural Network 
(Faster-RCNN) algorithm. The model was trained with the Common 
Objects in Context (COCO) datasets (consisting of 236 shark images) to 
detect and draw boxes around sharks (Lin et al., 2014; Ren et al., 2016). 
Faster-RCNN can detect more than one object within a frame, allowing 

Fig. 1. The Shark Detector system is composed of object- 
detection and classification packages that work best in a step
wise procedure. Additionally, by detecting shark subjects, the 
Shark Locator synthetically supplements the sharkPulse 
archive with cropped shark images available to Shark Identifier 
and Shark Classifier models as new training data. Videos are 
processed in the order of locating, identifying, and then clas
sifying. Heterogeneous data-mined datasets are processed in 
the order of identifying and then classifying.   
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multiple boxes to be drawn. To reduce processing time, we set a limit of 
10 boxes that could be drawn within a single frame. The SL boosted our 
classification dataset from 24,546 images to 53,345 images. 

2.2. Shark Identifier: binary model 

Second, we developed a binary sorting model. The SI identifies shark 
vs. non-shark subjects in images and is used to filter out non-shark im
ages, before the remaining images are taxonomically classified. We 
sourced 53,345 shark images from Instagram and sharkPulse, and 
additionally, we sourced 50,260 non-shark images from Instagram 
(Table 1). First, we constructed the SI to learn key shark features from 
training images by optimization of the binary cross-entropy loss function 
(LeCun and Bengio, 1998). We incorporated a pre-trained model to 
reduce the number of training steps. This is known as transfer learning. 
The SI was pre-trained with the VGG16 network which is trained on 1.28 
million images with 1000 categories. VGG16 achieves 92.7% test 

accuracy on the ImageNet dataset (Simonyan and Zisserman, 2015). 
CNN algorithms perform best when the categories of interest are well 
represented and balanced (Liu et al., 2019). Non-shark images were 
sourced entirely from Instagram. We resized images to 150 × 150 pixels 
to reduce memory consumption. 

To increase training accuracy, we used position image augmentation 
techniques, i.e., we artificially augmented images with transformations 
such as width and height shifting, shearing, zooming, and rotations 
(Tabak et al., 2019; Taylor and Nitschke, 2017). Then, we constructed 
convolutional-pooling layers which act as checkpoints for summarizing 
features the model has learned (LeCun and Bengio, 1998). When shark 
features are learned from trained images, the CNN generates parameters 
called weights. Weights were first initialized when we pre-trained net
works on the ImageNet dataset. We froze the bottom pre-trained layers 
to prevent weights from being modified while we trained the top layers 
for shark features. VGG16 contains 16 pre-trained layers and we added 
four layers to train for shark features. We trained the CNN to accept 
augmented and regular training images as raw pixels and gradually 
learn output predictions as they passed through convolutional-pooling 
layers. To facilitate adaptive learning, we adjusted the algorithm's 
learning rate to 5e-4 with the Adam optimizer (Kingma and Ba, 2014). 
To avoid vanishing gradients and improve training speed, we incorpo
rated Rectified Linear Units (i.e., ReLU activation function) into the 
CNN's fully connected layers (Nair and Hinton, 2010). The output layer 
was composed of two neurons for classification, corresponding to the 
number of classes being trained: shark and non-shark. These neurons 
were normalized with a softmax activation function (Bridle, 1990). We 
trained the model with 90% of the training set, and validated with the 
remaining images over 10 epochs. One epoch represents one full cycle 
where the algorithm has processed the entire training dataset. To pre
vent the model from overfitting, we incorporated dropout and regula
rization parameters. Dropout effectively removes a percentage of 

Fig. 2. The SL object-detection model draws boxes corresponding to confidence levels of shark presence. (a) A juvenile shortfin mako is detected and a single 
autocropped image is processed, removing irrelevant objects such as the bait canister and bluefin tuna. (b) Multiple Carcharhinidae species are detected and two 
images are cropped from a single image. 

Table 1 
SD packages trained with images sourced from various social networks and 
online archives.   

# of 
models 

Training 
images 

Test 
images 

training source 

Shark Locator 1 236  COCO dataset 

Shark 
Identifier 1 93,244 10,361 

sharkPulse, Flickr, 
iNaturalist, Instagram, 
YouTube 

Genus-specific 
Classifier 1 33,050 3672 

sharkPulse, Flickr, 
iNaturalist, Instagram, 
YouTube 

Species- 
specific 
Classifier 18 17,319 1924 

sharkPulse, Flickr, 
iNaturalist, Instagram, 
YouTube  
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neurons from the model that have learned features, and helps the model 
generalize when predicting new images. We set dropout to 30%. Image 
augmentation and early-stopping are forms of regularization, and are 
used to minimize validation error (Srivastava et al., 2014). We incor
porated early-stopping of training when test accuracy decreased for 
three consecutive epochs. Then we measured the ROC curve in Fig. 3. 
We built the CNN in Python using the Keras and Tensorflow packages 
(Abadi et al., 2016; Chollet, 2015). 

2.3. Shark classifier: genus and species classification 

We developed the SC as a hierarchical classification framework for 
classifying the identified shark images taxonomically. We trained one 
genus-specific model and a series of local species-specific models - one 
for each genus (Fig. 1). The SC ingests the filtered shark images and 
classifies them at the genus level with the genus-specific classifier (GSC). 
Then, depending on the genus, a species-specific classifier (SSCg) would 
predict the most likely species. 

We trained the SC with the sharkPulse database, images cropped 
with the SL, and Instagram images. In total, the SC contains 74 genera 
and 219 species of sharks with an average of 167 images per species 
(Table 1). The GSC was trained with 36,722 images and the SSCg was 
trained with 19,243 images. We evaluated the recall of a genus class vs. 
its training data quantity in Fig. 4a which revealed an average of 433 ±
47 images were needed to produce >50% recall. Recall measures the 
proportion of shark images that were correctly classified. Most genera 
(>64%) did not contain this many images to produce adequate training 
quality. Once a genus was classified, we looked at the same relationship 
for species classes in Fig. 4b and discovered an average of 161 ± 41 
images were needed to produce >50% recall. We used these averages as 
training data quantity thresholds for the SC (see Fig. 4c and d). Next, to 
better understand why models confused classes with each other, we 
examined two metrics. We used Pielou's evenness index, usually 
employed to assess whether and to what extent species's abundances are 
uniform in a community, to quantify how balanced training datasets 

were (Pielou, 1966). 
Then we evaluated the difference in morphology by calculating the 

Euclidean distance between species. This was done by collecting a 
common set of morphometric measurements for 124 species that were 
available in the rfishbase R package and that represented our dataset 
(Boettiger et al., 2012; Norouzzadeh et al., 2018). We used total length, 
standard length, fork length, and head length. Then we calculated the 
average for each measurement to create a morphometric centroid of all 
species. We compared each species to this centroid to assess morpho
logical homogeneity. 

For the GSC, we trained 36,722 images across 26 genus classes that 
met the training data threshold of 433 images (Table 1). We trained a 
27th class with 2593 images to represent the >64% of genera that did 
not meet the training data threshold. This class was labeled other genus. 
Since there were 18 shark genera containing two or more species, we 
developed 18 SSCg models having a variable number of classes. SSCg 
species classes that contained <161 images were added to an other 
species class. The exception to this rule occurred when a genus contained 
exactly two species (e.g., Echinorhinus and Negaprion). In this case, 
regardless of training data quantity, both species were trained with their 
respective labels and the other species class was not incorporated. 
Regardless of species-specific dataset size, if their parent genus did not 
meet the threshold, a SSCg local model was not trained. We trained 18 
SSCg models with 19,243 images. The SC is capable of classifying 47 
species. 

We optimized the models with the categorical cross-entropy function 
to learn shark features that are specific to genus and species classes 
(LeCun and Bengio, 1998). To prevent redundant feature training and 
incorporate fewer parameters, we used DenseNet201 as our pre-trained 
network for multiclass classification (Huang et al., 2016). We used 
image augmentations and passed our training dataset through 20 
convolutional-pooling layers to generate feature maps at each layer, 
creating weights. We adjusted the SC's learning rate to 9e-3 with the 
Adagrad optimizer (Duchi et al., 2011). We activated layers with the 
sigmoid function (Narayan, 1997) which, in the case of the SC, facilitated 

Fig. 3. Receiver operating characteristic (ROC) curve of the SI binary classification scheme. The Area Under the Curve (AUC) conveys a probability measure of how 
likely the model is to separate between positive and negative classes. A straight diagonal line indicates a no-skill classification model which discriminates randomly. 
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higher test accuracy than ReLU activation units. We normalized classes 
with the softmax activation function (Bridle, 1990). We tuned dropout 
to 15% and trained the models over 15 epochs while incorporating 
early-stopping if validation loss increased for 5 consecutive epochs 
(Srivastava et al., 2014). 

2.4. Shark detector performance 

To demonstrate the potential of this approach, we applied the SD to 
three common cases of data generation methods involving sharks, and 
measured performance. In the first method, we used the SL to locate 
shark subjects in the sharkPulse dataset. We used a detection threshold 
of 0.9. Before locating shark subjects, we resized images to 512 × 512. 
We calculated the proportion of shark images that were located by the 
SL. 

Second, we evaluated a data pipeline we developed for sharkPulse, 
where global sighting records of sharks are generated from the social 
network Instagram (Jenrette et al., Unpublished data). We extracted 
images from Instagram, identified shark images (Table 2) and classified 
them (Table 3). In this case, we excluded the SL when processing 
Instagram images because it was more computationally expensive and 
did not significantly impact classification accuracy. 

In the third method, we post-processed two BRUV videos and 5 
YouTube (YT) videos with the goal of locating, identifying, and classi
fying all sharks present (Fig. 2 and Table 4). Videos were chosen to 
represent varying habitat types, conventional ecological surveys, and 
data-mining methods focused on sharks. We processed all videos one 
after the other to evaluate total processing time in addition to individual 
processing time. All videos were recorded at 30 frames per second. We 
extracted 1 frame per second and resized frames to 512 × 512 to reduce 
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Fig. 4. Measured performance of SD components. (a) GSC accuracy for 13 genus classes as a result of training dataset size fit with a 2-parameter asymptotic model. 
The asymptotic curves represent the maximum recall a class can achieve within the model. (b) SSCg accuracy of seven species classes and two classes that contain a 
data-poor Carcharhinus sp. and Sphyrna sp. (c) Distribution of dataset size threshold for 12 GSC classes (Prionace was excluded due to recall never reaching 50%). 
Curves represent the density of normal distribution. (d) Distribution of dataset size threshold for nine SSCg classes whose parent genera contain more than two 
species. (e) Performance of all SD components with a standard error interval for SSCg models. (f) Accuracy distribution of all 18 SSCg models. 
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memory consumption and decrease processing time. The extracted 
frames were then screened with the SL. The SL threshold was increased 
to 0.99 to minimize the false-positive rate. To test the SL's specificity on 
a video that did not contain any shark subjects, we processed a YT Video 
that exclusively depicted typical coral reef habitat and numerous fish 
species, but did not contain any sharks (see YT Video 2 in Table 4). We 
annotated shark-located frames with the time-stamp in the video they 
were extracted from. This was done so we could check the video at the 
exact time a shark was located. We sorted shark-located frames with the 
SI (threshold = 0.5). Finally, the identified shark images were classified 
with the SC. We calculated the SC's recall for its top guess and its top 
three guesses. 

For the Instagram pipeline, we data-mined 14 separate datasets of 
images, pertaining to 14 target species, to first assess the SI's perfor
mance. Media was easier to extract when we identified the hashtags 
delineated in Table 2 (Kim et al., 2016). These species represented 
morphologically diverse groups of sharks and showed the highest vali
dation accuracies when training the SC. Therefore, this analysis would 
demonstrate the SI's ability to recognize general shark features as well as 
the SC's ability to classify species that were best trained. We collected an 
average of 951 images per hashtag, so the task of manually validating 
classified species was not time-consuming. We collected images along 
with their metadata from Instagram with the open-source program 
InstaCrawlR (Schroeder, 2018). We removed duplicate images by 

Table 2 
Hashtags relevant to specific shark species that were data-mined from Instagram. The result was heterogeneous datasets of images. We measured the SI's sorting 
accuracy and error rate at a confidence threshold = 0.5.  

Hashtag of shark group Test images TP FP TN FN Recall Precision Specificity FPR FNR F1 score 

#tigershark 1590 299 19 1261 11 0.96 0.94 0.99 0.01 0.04 0.95 
#blueshark 1269 343 22 889 15 0.96 0.94 0.98 0.02 0.04 0.95 
#whaleshark 1144 309 21 800 14 0.96 0.94 0.97 0.03 0.04 0.95 
#makoshark 988 228 15 730 15 0.94 0.94 0.98 0.02 0.06 0.94 
#scallopedhammerhead 871 149 18 701 3 0.98 0.89 0.97 0.03 0.02 0.93 
#sandtigershark 1011 220 21 753 17 0.93 0.91 0.97 0.03 0.07 0.92 
#nurseshark 1370 180 23 1156 11 0.94 0.89 0.98 0.02 0.06 0.91 
#greatwhites 849 251 24 550 24 0.91 0.91 0.96 0.04 0.09 0.91 
#blacktipshark 955 209 40 700 6 0.97 0.84 0.95 0.05 0.03 0.90 
#portjacksonshark 1012 191 28 971 13 0.94 0.87 0.97 0.03 0.06 0.90 
#sixgillshark 287 107 19 150 11 0.91 0.85 0.89 0.11 0.09 0.88 
#spottedwobbegong 180 97 18 55 10 0.91 0.84 0.75 0.25 0.09 0.87 
#whitetipreefshark 890 250 43 561 36 0.87 0.85 0.93 0.07 0.13 0.86 
#greyreefshark 901 203 55 600 43 0.83 0.79 0.92 0.08 0.17 0.81 
total 13,317 3036 366 9877 229 0.93 0.89 0.96 0.04 0.07 0.91  

Table 3 
SC classification of data-mined images from Instagram. Recall was measured for the SC's top species prediction as well as the top three predictions.  

Species Scientific Name Training images Test images Recall Top-3 Recall 

Whale shark Rhincodon typus 1602 309 0.95 0.99 
Port jackson shark Heterodontus portusjacksoni 1172 191 0.87 0.98 
White shark Carcharodon carcharias 2290 251 0.87 0.9 
Whitetip reef shark Triaenodon obesus 1786 250 0.79 0.92 
Blacktip reef shark Carcharhinus melanopterus 829 209 0.77 0.91 
Shortfin mako Isurus oxyrinchus 1360 228 0.76 0.95 
Spotted wobbegong Orectolobus maculatus 1019 97 0.74 0.99 
Nurse shark Ginglymostoma cirratum 821 180 0.7 0.9 
Tiger shark Galeocerdo cuvier 1117 299 0.68 0.91 
Grey reef shark Carcharhinus amblyrhynchos 550 203 0.68 0.88 
Bluntnose six-gill shark Hexanchus griseus 792 107 0.68 0.71 
Sand tiger shark Carcharias taurus 2405 220 0.67 0.89 
Scalloped hammerhead Sphyrna lewini 274 149 0.6 0.84 
other species 1086 88 0.5 0.71 
Blue shark Prionace glauca 990 343 0.29 0.76 
total  18,093 3124 0.7 0.9  

Table 4 
Performance metrics of SD components to locate, identify, and classify sharks from two baited remote videos and five YouTube videos that collectively depict eight 
species of sharks. SL threshold = 0.99, SI threshold = 0.5.   

Sicilian Channel Palau archipelago YT 1 YT 2 YT 3 YT 4 YT 5 

Video length (min) 35.4 17.7 49.2 10.5 4.3 14 5.6 
Processing time (min) 37.1 18.2 55 13.5 6.2 17.2 8 
Frames extracted 2121 1055 2951 630 255 841 333 
# of shark images 812 152 855 0 120 256 82 
# of non-shark images 1309 903 2096 630 135 585 251 
Shark species I. oxyrinchus G. cuvier, C. amblyrhynchos C. carcharias, G. cuvier, S. mokarran None G. cirratum C. taurus, S. mokarran C. melanopterus 
SL Recall 0.9 0.88 0.89  0.8 0.9 0.91 
SL Precision 0.91 0.84 0.9  0.93 0.86 0.87 
SL Specificity 0.92 0.85 0.87 0.93 0.89 0.84 0.84 
SI Specificity 0.97 0.94 0.9  0.95 0.96 0.96 
SC Recall 0.62 0.79 0.69  0.78 0.82 0.73 
SC Top-3 Recall 0.7 0.86 0.76  0.84 0.88 0.81  
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comparing their pixel content and retaining only one copy (Lundrigan, 
2018). To evaluate the relationship between false-positive rate and ac
curacy of the SI at various thresholds (ranging from 5e-6 to 0.999), we 
generated a receiver operating characteristic (ROC) curve (Fig. 3). We 
used a threshold of 0.5 to identify 3533 data-mined shark images from 
Instagram. After image identification, we combined all images labeled 
as sharks and classified them with the SC (Table 3). We analysed the 
relationship between recall and training dataset size of 13 genera and 14 
species to identify a target training size for classes with not-yet enough 
information (Fig. 4). We fit a 2-parametric asymptotic model y = a(1 −
e− bx) and identified the asymptote value for each class. 

Finally, we compared the performances of the iNaturalist's classifier 
Seek with the SD. We created a test dataset by sourcing 400 new images 
from Instagram. We collected Instagram images using the methods 
above, except we specified different hashtags: #shark and #sharkfishing 
to collect 13 shark species. We then removed identical images. From 
each hashtag we pooled a total of 200 images that represented shark 
subjects commonly photographed above and below water. Then we 
processed the dataset with both models and calculated their accuracy. 

For evaluating performance of the SD packages, we calculated recall, 
precision, specificity, and F1 score as follows: 

Recall = TP/(TP+FN) (1)  

Precision = TP/(TP+FP) (2)  

Specificity = TN/(TN+FP) (3)  

Fβ =
1 + β2

β2( recall− 1 + precision− 1) (4) 

TP = true positive, FP = false positive, TN = true negative, FN = false 
negative. 

Recall, also known as sensitivity, measures the proportion of posi
tives that are correctly recognized. Precision measures the proportion of 
retrieved individuals that are relevant. Specificity measures the pro
portion of correctly identified negatives. F1 score measures the tradeoff 
between recall and precision. We provide these models and their 
training data in an instructional GitHub repository (https://github. 
com/JeremyFJ/Shark-Detector). 

3. Results 

3.1. Boosting training data 

The SD components performed well individually and as a stepwise 
process. Overall, the SL performed at 89% accuracy, the SI at 91% ac
curacy, and the SC at 69% accuracy. The SL located 90% of shark images 
from the sharkPulse data archive (n = 24,546 shark images) and 
generated novel training data by extracting only shark features. By 
locating one or multiple subjects in shark images (Fig. 2), the SL cropped 

Fig. 5. Images identified by the SI and subsequent classification by the SC. (a) The SI and SC correctly identify a diverse collection of shark images by classifying 
underwater photographs, images with foreground and background noise, images with hardly discernible shark features, and eight different species. (b) Common 
subjects that were misclassified by the SI such as cetaceans (and other marine and terrestrial animals), empty foregrounds, inscrutable objects, and fake sharks. (c) 
The SI misses shark presence due to partially concealed features. 
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28,799 additional images to inflate the original training dataset. This 
approach appended 14,888 cropped images to GSC's training dataset 
and 9979 images to the SSCg's training datasets. All subsequent SD 
models dramatically increased their accuracy as a result of ingesting this 
training data. We observed an average 3.5% increase in test accuracy of 
all models that used training datasets inflated by the SL. In Table S1, we 
tabulate all genus and species classes that are available in sharkPulse, 
the amount of training data, and their observed validation accuracy (if 
the training data threshold was met). 

3.2. SC training and overall performance 

By examining the training data threshold distribution of GSC and 
SSCg classes, it was revealed that 433 ± 47 images are needed to achieve 
>50% recall among genus classes and 161 ± 41 images are needed to 
achieve the same recall among SSCg classes (see Fig. 4c and d, and Table 
S1). However variability across genera and species is high in Fig. 4a and 
b, and the relationship between the two variables depends on morpho
logical distinctiveness as well as the level of training data balance. 
Furthermore, to obtain the same recall, we observed highly distinct 
species such as Rhincodon typus (morphological Euclidean distance to 
centroid = 19.0) and Orectolobus spp. (distance = 25.6) required 
significantly less training images than species with common physical 

attributes such as Carcharhinus spp. (distance = 8.3) and Prionace glauca 
(distance = 9.0). We calculated the Pielou diversity index of the GSC to 
be 0.94 (scale 0–1), meaning genus training datasets were overall well- 
balanced. The average Pielou diversity index of SSCg models was 0.77. 
Lastly, we compared the classification accuracy of the iNaturalist model 
Seek and the SD on 400 random shark images sourced from Instagram. 
There were 13 species to classify. Seek performed at 62% top classifi
cation recall while the SD performed at 73% top recall. 

3.3. Instagram 

By data-mining images from Instagram, we created 14 datasets. The 
SI removed non-shark images and retained shark images with 91% 
overall accuracy (Table 2). About 5% of actual shark images were not 
related to the hashtag they were scraped from (i.e., they were other 
species). The area under the correlation between recall and false- 
positive rate of the SI represented a successful classification probabil
ity of 0.885 (Fig. 3). We noticed the SI displayed lower recall when 
sorting video frames that had not yet been cropped for shark subjects, 
but performed well when sorting heterogeneous data-mined images. The 
SI displayed a very low false-positive rate and false-negative rate. 
However, we noticed images like those in Fig. 5b and c represented 
commonly misclassified images. These misclassifications occurred 9% of 

Fig. 6. GSC normalized confusion matrix of 26 shark genera classes. A 27th class other genus represents 48 data-deficient genera.  
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the time. 
The SC performed at 70% accuracy when classifying Instagram im

ages of 17 species (see Table 3). The SC classified 3124 shark images to 
14 species and, in addition, three species to the other species label (two 
Carcharhinus spp. and one Sphyrna sp.). When testing recall, we noticed 
that, as the test class was trained with increasingly less images, the 
model would proportionally mistake that class for physically similar 
genera. We examined the recall asymptotes for all classified genera as 
well (Fig. 4a). Many classes never met their asymptotic values, meaning 
that inflating their training datasets would improve recall. The classes 
Orectolobus, Rhincodon, and Heterodontus reached their asymptotic 
values with <1000 training images, and at relatively high recall (92%, 
90%, and 83% respectively). Some classes exhibited low peak recall, 
such as blue sharks (Prionace glauca). From the confusion matrix (Fig. 6), 
blue sharks were commonly mistaken for Carcharhinus species. The low 
asymptotic curve indicates that, with the same GSC structure, class 
recall for blue sharks cannot significantly improve unless training 
datasets are balanced and boosted. 

Similarly, we assessed the recall of species classes within SSCg 
models (see Fig. 4b). Both the Hexanchus and Isurus models contained 
two unbalanced classes (see Table 5 for training datasets). So, we 
anticipated that the recall of these models' dominant classes would peak 
even if they were trained with fewer images. The models Carcharhinus, 
Heterodontus, Orectolobus, and Sphyrna contained mostly balanced 
training datasets with four or more classes. Interestingly, port jackson 
shark (Heterodontus portusjacksoni), spotted wobbegong (Orectolobus 
maculatus), and blacktip reef shark (Carcharhinus melanopterus) classes 
reached their maximum recall while being trained with <200 training 
images. Grey reef shark (Carcharhinus amblyrhynchos), other Carcharhi
nus sp., scalloped hammerhead (Sphyrna lewini), and other Sphyrna sp. 
classes did not meet their maximum recall with <500 training images. 

3.4. BRUV surveys and online videos 

We allowed the boosted SD to locate and classify eight shark species 
from seven videos without manual interaction. We processed two BRUV 
recordings and five YT videos that made up 136 min of total video 
footage, which contained eight species of sharks. We spent 6.2 h 
manually validating all of the extracted frames (n = 8185 frames). It 
took the SD 2.6 h to process all videos in succession. The SL located 89% 
of available shark frames (n = 2277 frames) and the SI filtered out false- 
positive images with 94% specificity (Table 4). The SC classified all 
species with an average top recall of 69% and top-3 recall of 76%. The SL 
showed 93% specificity and a false-positive rate of 7% when processing 
YT Video 2, which did not contain sharks. 

4. Discussion 

Historically hampered by problems of data paucity, shark research is 
transitioning toward a time with ubiquitous big data. Embracing this 
movement requires being able to capture and structure the increasing 
amount of information that is available online and generated by modern 
scientific monitoring. On this line, we developed a modular software 
package targeted at identifying and classifying shark images from un
structured and unlabeled media. In this package, location and identifi
cation models were able to detect sharks with 90% and 91% recall, 
respectively. Further, a pseudo-hierarchical classification structure 
classified 26 genera and 47 shark species, at 69% and an average of 85% 
recall, respectively. Trained on the largest and most diverse shark image 
dataset compiled so far, this software facilitates rapid data collection on 
sharks and generation of biologically relevant data, including boosting 
information for data-poor species. 

Expressing the full potential of this approach would be supporting a 
completely automated data analysis pipeline. We have shown that sur
veys and online archives can be automatically processed for shark 

Table 5 
List of species, and number of training images, for which we could infer a taxonomic identification at the genus level (with the GSC model) and species level (with the 
SSCg models). Acc = classification accuracy. Genera are included if the training data >433 images and species were included if the training data >161 images (please 
see results for these thresholds). Species with fewer images than the threshold were grouped in the Genus spp. classes. If a genus contained exactly two species, both 
species were trained regardless of training data quantity. A complete list of species and their available training images are given in Table S1.  

Species Images(Acc) Species Images(Acc) Species Images(Acc) 

Alopias 1185(0.65) Galeorhinus 791(0.53) Orectolobus 2021(0.92) 
A. vulpinus 353(0.81) G. galeus 791(1) O. maculatus 1019(0.82) 
Alopias spp. 174(0.72) Galeus 575(0.72) O. halei 542(0.62) 
Brachaelurus 479(0.65) G. melastomus 376(1) O. ornatus 281(0.34) 
B. waddi 299(0.96) Ginglymostoma 945(0.61) Orectolobus spp. 97(0.6) 
B. colcloughi 162(1) G. cirratum 821(1) Prionace 990(0.42) 
Carcharhinus 4963(0.71) G. unami 124(0.92) P. glauca 990(1) 
C. melanopterus 829(0.7) Haploblepharus 680(0.61) Rhincodon 1602(0.88) 
C. amblyrhynchos 550(0.67) H. fuscus 271(0.96) R. typus 1602(1) 
C. limbatus 488(0.41) H. edwardsii 215(0.23) Scyliorhinus 964(0.63) 
C. leucas 402(0.66) Haploblepharus spp. 194(0.75) S. canicula 378(0.97) 
C. obscurus 259(0.85) Heterodontus 2180(0.82) Scyliorhinus spp. 94(0.5) 
C. perezi 245(0.24) H. portusjacksoni 1172(0.94) Sphyrna 1591(0.54) 
C. plumbeus 212(0.45) H. galeatus 343(0.89) S. tiburo 377(0.79) 
Carcharhinus spp. 815(0.74) H. francisci 337(0.74) S. lewini 274(0.82) 
Carcharias 2405(0.84) H. japonicus 306(1) S. mokarran 165(0.47) 
C. taurus 2405(1) Heterodontus spp. 22(0.84) Sphyrna spp. 140(0.79) 
Carcharodon 2290(0.72) Hexanchus 971(0.67) Squalus 1044(0.52) 
C. carcharias 2290(1) H. griseus 792(1) S. acanthias 182(1) 
Cephaloscyllium 663(0.56) Hexanchus spp. 8(0) Squalus spp. 130(0.77) 
C. isabellum 323(1) Isurus 1636(0.72) Triaenodon 1786(0.69) 
C. laticeps 264(1) I. oxyrinchus 1360(0.99) T. obesus 1786(1) 
Cephaloscyllium spp. 76(0.8) I. paucus 62(0.25) Triakis 1060(0.59) 
Cetorhinus 642(0.57) Mustelus 677(0.43) T. semifasciata 673(1) 
C. maximus 642(1) M. canis 187(0.68) T. megalopterus 213(0.86) 
Echinorhinus 516(0.87) Mustelus spp. 335(0.88) T. scyllium 161(1) 
E. cookei 452(1) Negaprion 910(0.38) Triakis spp. 12(0) 
E. brucus 
Galeocerdo 
G. cuvier 

6(0)  
1117(0.72)  
1117(1) 

N. brevirostris 
N. acutidens 

171(1)  
69(0)    
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classification, although with human review needed. While the SD is 
going toward complete automation, there is still room for improvement. 
Our shark detector is currently the most efficient software for locating, 
identifying and classifying sharks from unlabeled media. The SD top 
species predictions were 11% more accurate than iNaturalist's Seek 
(currently the best general-purpose biodiversity classifier available) 
(Horn et al., 2017). Yet model accuracy can still be improved, especially 
for the GSC model. 

The GSC acts as the parent node for multiclass classification among 
the SD components and is, therefore, most challenged in the pipeline 
(see Fig. 4e). The GSC typically displayed lower classification error with 
more training samples. However, misclassification also depended on 
physical distinctiveness and training data balance and content. For 
example, carpet sharks (Orectolobus spp.) are easily identified because 
they are physically unique. When comparing morphological Euclidean 
distances with all species represented, Orectolobus species exhibited one 
of the highest distances (25.6) meaning they are among the most 
physically dissimilar taxa. We also noticed the content of Orectolobus 
species' image and video archives were homogenous because they are 
strictly bottom-dwelling sharks and are almost exclusively observed in 
benthic habitats. Therefore, the class achieved a high recall (92%) with 
<1000 training images (see Fig. 4a). Conversely, blue sharks (Prionace 
glauca) exhibit similar morphometric measurements to the centroid of 
the training dataset (Euclidean distance = 9.0). They are frequently 
observed in various marine habitats by photographers, divers, and rec
reational and commercial fishermen (Campana et al., 2009), resulting in 
heterogeneous image and video archives. As we continue to capture this 
heterogeneity and physical distinctiveness by gathering more images, 
we expect classification accuracy to increase. But currently, P. glauca 
experiences low recall (29%) with <1000 training images. 

During training of the GSC, 15% of test images (n = 539 images) 
were mistaken for the Carcharhinus genus (trained with 4963 images and 
represents 24 species) and the other genus class (trained with 2593 im
ages and represents 48 genera and 172 species). Because the Carch
arhinus and other genus classes describe 196 species, their training 
datasets are heterogeneous and variable in morphology, imbalanced 
relative to other smaller genera, and represent 21% of the entire training 
dataset. While the GSC training dataset was shown to be well-balanced 
with Pielou's diversity index of 0.94, we can minimize confusion and 
improve overall classification accuracy by continuing to balance data- 
poor genera. Furthermore, boosting genera that do not reach the 
training threshold would remove them from the other genus label, reduce 
confusion with the label, and increase the SC's taxonomic range. The SC 
will gain a new classifiable genus capable of achieving >50% recall. 
However, morphological diversity will still affect the GSC's overall 
training accuracy. 

SSCg models are composed of child nodes that utilize previous 
taxonomic information from the GSC. As expected, average SSCg clas
sification accuracy (85% with 3.5% standard error) was higher than GSC 
accuracy (Fig. 4e and f). Nonetheless, even SSCg models were chal
lenged by imbalanced datasets and class similarity. The Hexanchus and 
Isurus models each contain two classes, where the dominant class was 
trained with an average of 50 times more images than the non-dominant 
class. Recall was perfect for Hexanchus griseus and Isurus oxyrinchus 
(Fig. 4b) because the model did not learn the misrepresented class. This 
affected our SSCg threshold distribution (see Fig. 4d) by indicating less 
training images were needed to reach >50% recall, without taking into 
account that the classes are imbalanced. Further, fitting asymptotic 
recall functions of different SSCg model classes was useful for gauging 
future data boosting efforts. For instance, we noticed a pattern where 
dominant classes attained their maximum recall (<500 training images) 
while non-dominant classes did not. This would suggest that maximum 
recall values are useful as benchmarks, but will change as species are 
boosted and classes are increasingly represented. And so, to best in
crease overall SC top recall and species coverage (Table 3), we must 
grow the number of taxonomically labeled images while prioritizing 

data-poor species, balancing training datasets, and increasing image 
diversity. 

SI/SL misclassifications are only <10% frequent. The Faster-RCNN 
model allowed the SL to achieve high recall (89%), precision (88%), 
and specificity (93%) (Ren et al., 2016). Varying habitat types and 
methods of videotaping, and presence of non-shark fauna did not 
significantly impact these metrics. VGG16 allowed the SI to achieve a F1 
score of 91% (Simonyan and Zisserman, 2015). Performance of the SI 
and SL, like the SC, can be boosted by inflating training datasets. 

The training and validation datasets are substantial considering the 
scarcity of visual information repositories for most shark species. 
SharkPulse contains the largest repository of shark images and provides 
a consistent influx of shark-specific media by combining several data 
collection approaches: data scraping from online archives, user sub
missions, and synthetic image generation techniques. Our training data 
is high quality due to crowdsourcing validation of taxonomic and 
spatiotemporal information. This facilitates continuous data collection 
and classification accuracy and is slowly being adopted for conservation 
(Ferretti et al., Unpublished data; Horn et al., 2017; Mart'ın et al., 2021). 
For example, iNaturalist's Seek was trained on a massive database of 
crowdsourced images that were validated by the application's users. 
Effectively, iNaturalist and iSharkFin grow with user submissions which 
can improve the models' classification accuracy (Barone et al., 2022; 
Horn et al., 2017). We adopted this approach and combined it with 
automated data scraping and synthetic image generation techniques, 
making the Shark Detector a novel instrument for collecting visual 
media of sharks. While the Shark Detector excels at classification ac
curacy and taxonomic range compared to other methods, there are still 
objectives to strive for. Seek is available on smartphones and as a result, 
they can equip everyone with intelligent monitoring capabilities. 
Increasing citizen science interactions and validation effort with mobile 
applications would continue to improve the quality of data that is 
sourced from sharkPulse and the Shark Detector. 

The largest limitation of the Shark Detector is classification accuracy 
for data-poor species. Boosting natural and synthetic image generation 
techniques will inflate the training datasets of these species consider
ably, and subsequently increase classification accuracy. We showed how 
data-mining (Table 2), object-detected cropping (Fig. 2), and image 
augmentations are effective data generation approaches. Social net
works like Instagram offer an inexhaustible source of shark and non- 
shark images (Jenrette et al., Unpublished data). Furthermore, syn
thetic image generation can be significantly improved. We can extract 
cropped images of fish and paste them onto randomly selected back
grounds while incorporating transformations. This approach will effec
tively generate thousands of new images from a handful of genuine 
images (Allken et al., 2018). As new shark images are ingested and 
validated, the Shark Detector will immediately use them, automatically 
funneling those images into the appropriate training datasets. The SD 
will be a rapidly evolving AI, automatically collecting and generating 
new shark images, training models, and growing smarter with each step. 

Utilizing unsupervised models for shark detection and species iden
tification has multiple applications, including processing online videos, 
survey footage, and big data (Siddiqui et al., 2018). This allows us to 
expand possibilities for filling information gaps in shark populations, 
even beyond traditional fisheries monitoring techniques. Instagram is a 
massive data cloud that offers tremendous opportunities for generating 
biologically relevant data. However, it contains a daunting amount of 
irrelevant content that would be unrealistically filtered with manual 
validation (Migliaccio et al., 2019). Plus, even targeted shark images 
often lack taxonomic and spatiotemporal information that need to be 
inferred with post processing. When 91% of noisy data is removed 
(which is the current SI capability), and the remaining content is taxo
nomically classified, validation suddenly becomes practical. Further
more, filtering and classifying facilitate the development of geoparsing 
and time-stamping programs (Migliaccio et al., 2019). Preliminary in
vestigations suggest that Instagram posts of sharks can be effectively 
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transformed into occurrence records with these taxonomic and spatio
temporal identifiers (Jenrette et al., Unpublished data). 

We compiled object-detection and classification models into a self- 
standing package that utilizes transfer learning, deep learning, and 
multiple CNNs. To our knowledge, this is the most reliable identification 
software for general-purpose shark recognition trained with the largest 
and most diverse shark image dataset available today. This package is 
available to all researchers willing to use and customize these models for 
accommodating their own experimental avenues (https://github. 
com/JeremyFJ/Shark-Detector). Our aim is facilitating rapid data 
collection for boosting data-poor species, expanding the SD taxonomic 
range, and increasing its accuracy. The Shark Detector is valuable for 
transitioning into the big data revolution for filling information gaps 
while supplementing traditional fisheries monitoring techniques. Iden
tification without time-consuming validation can fundamentally change 
the design and quality of studies focusing on shark ecology, biology, and 
conservation. 
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